CONNECTING to the Energy Economy SPEAKER SERIES

OPTIMAL SOLAR SITING FOR MARYLAND

Thursday, October 8, 2020

Series Sponsored by

www.mdcleanenergy.org/speakerseries
SPECIAL THANKS TO OUR SESSION SPONSOR
OPTIMAL SOLAR SITING FOR MARYLAND

DAVID MURRAY
Executive Director
MDV-SEIA

SUSAN MINNEMEYER
Vice President for Technology
Chesapeake Conservancy

ANDREW CASSILLY
Senior Advisor to the Governor
Office of the Governor-Maryland

ROB CORRADI
Senior Advisor, Public Affairs
Sun Tribe

DAVID BEUGELMANS
Member
Gordon Feinblatt

MDCLEANENERGY.ORG/SPEAKERSERIES
OPTIMAL SOLAR SITING FOR MARYLAND

SUSAN MINNEMEYER
Vice President for Technology
Chesapeake Conservancy
Determining Optimal Solar Siting Pilot for Baltimore County and City

Susan Minnemeyer, Vice President for Technology
Emily Wiggans, GIS Analyst

Supported by the Valleys Planning Council
Renewable Portfolio Goal

• 50% of electricity generated from renewable sources by 2030
 • 14.5% carve-out for solar energy

• By 2028, Maryland will produce 9,000 GWh/year of electricity from Solar
 • We need 6 times our current capacity in 8 years to meet the RPS goal

Source: EPA Greenhouse Gas Equivalencies Calculator
How much solar energy is needed?

- Baltimore County and City, estimated share
 - 1,967 GWh/year based on electricity consumption
 - 18% of statewide goal

- Are there enough optimal solar sites to reach this goal?
Land Use Tradeoffs

Ground-mounted solar competes with desirable land uses, for food production and environmental services.

Conversion of prime farmland for solar energy development competes with land needed for food production.

Loss of forest and ecologically sensitive lands undesirable for environmental protection and climate mitigation & resilience.
Solar in the built environment

Enhances commercial and residential properties

Reclaim degraded lands, landfills, industrial sites

Solar parking canopies: shade, cooling, charging

Equity: access to solar energy, employment opportunities
Workflow

• Potential sites
 • Pass legal screening (zoning, protected areas)
 • Pass technical screening (proximity to electrical grid)

• Scoring
 • Analyzed for environmental, equity and efficiency criteria
 • Identification of opportunities on degraded sites

• Optimal and preferred sites
 • Optimal sites are in the built environment or on already degraded lands
 • Among ground-mounted sites not on degraded lands, preferred sites solar avoid key tradeoffs
Results

Optimal solar sites for Baltimore County and City (acres)

<table>
<thead>
<tr>
<th>Type</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking</td>
<td>10,515</td>
</tr>
<tr>
<td>Rooftop</td>
<td>22,214</td>
</tr>
<tr>
<td>Degraded lands</td>
<td>1,116</td>
</tr>
<tr>
<td>Total</td>
<td>33,845</td>
</tr>
</tbody>
</table>

![Optimal solar sites](image)
What % of optimal sites must be viable to reach goal?

- Energy generation from optimal site
- Sites to meet goal

Energy generation potential from optimal sites

- Total: 22,789 GWh/year
- Baltimore County and City share: 1,997 GWh/year

...7.9% of optimal sites must prove viable to reach RPS goal
Recommendations

• Prioritize optimal sites

• Avoid prime farmland, forest and ecologically sensitive lands

• Incentives, policies are needed to encourage optimal siting
Susan Minnemeyer
Vice President for Technology
sminnemeyer@chesapeakeconservancy.org
OPTIMAL SOLAR SITING FOR MARYLAND

ANDREW CASSILLY

Senior Advisor to the Governor
Office of the Governor - Maryland
OPTIMAL SOLAR SITING FOR MARYLAND

ROB CORRADI
Senior Advisor, Public Affairs
Sun Tribe
OPTIMAL SOLAR SITING FOR MARYLAND

DAVID BEUGELMANS

Member
Gordon Feinblatt LLC
SEPT 10 Access to Capital: Future Strategies to Support Advanced Energy
SEPT 17 Moving Toward Energy as a Service
SEPT 24 Emerging Energy Storage Solutions & Grid Modernization
OCT 1 Managing the MOPR: Maryland Response to FERC Order
OCT 8 Optimal Solar Siting for Maryland
OCT 15 Ensuring Building Health: Leveraging Technology for Efficient Operation and Safe Environments
OCT 22 Adding Resilience to the Energy Equation
OCT 29 Advancing Energy Innovation as an Economic Development Strategy
NOV 5 The Future of Nuclear Energy